资源类型

期刊论文 529

会议视频 4

年份

2024 1

2023 51

2022 47

2021 45

2020 39

2019 47

2018 33

2017 26

2016 21

2015 30

2014 30

2013 22

2012 23

2011 11

2010 19

2009 16

2008 18

2007 24

2006 5

2005 5

展开 ︾

关键词

吸附 2

2035 1

60 GHz;天线阵列;线极化;圆极化;毫米波 1

Tetrasphaera 1

Au/Ti双功能催化剂 1

BFT 1

COVID-19 1

Cu(Inx 1

DNA组装 1

EFP 1

Ga1–x)Se2 1

H2O/CO2共电解 1

H2S 1

H2有效利用率 1

IKPCA 1

KPCA 1

MOF基催化剂 1

MTO 1

Nelder-Mead单纯形法 1

展开 ︾

检索范围:

排序: 展示方式:

Microalgae

Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 784-791 doi: 10.1007/s11783-013-0590-4

摘要: Renewable algae biomass, was used as substrate for generating electricity in two chamber microbial fuel cells (MFCs). From polarization test, maximum power density with pretreated algal biomass was 102 mW·m (951 mW·m ) at current generation of 276 mA·m . The individual electrode potential as a function of current generation suggested that anodic oxidation process of algae substrate had limitation for high current generation in MFC. Total chemical oxygen demand (TCOD) reduction of 74% was obtained when initial TCOD concentration was 534 mg·L for 150 h of operation. The main organic compounds of algae oriented biomass were lactate and acetate, which were mainly used for electricity generation. Other by-products such as propionate and butyrate were formed at a negligible amount. Electrochemical Impedance Spectroscopy (EIS) analysis pinpointed the charge transfer resistance (112 ?) of anode electrode, and the exchange current density of anode electrode was 1214 nA·cm .

关键词: microbial fuel cell (MFC)     algae     bioelectricity     substrate     volatile fatty acid     biomass     COD removal efficiency    

Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio

Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1183-7

摘要: CW-Fe allowed a high-performance of NO3‒-N removal at the COD/N ratio of 0. Higher COD/N resulted in lower chem-denitrification and higher bio-denitrification. The application of s-Fe0 contributed to TIN removal in wetland mesocosm. s-Fe0 changed the main denitrifiers in wetland mesocosm. Sponge iron (s-Fe0) is a porous metal with the potential to be an electron donor for denitrification. This study aims to evaluate the feasibility of using s-Fe0 as the substrate of wetland mesocosms. Here, wetland mesocosms with the addition of s-Fe0 particles (CW-Fe) and a blank control group (CW-CK) were established. The NO3‒-N reduction property and water quality parameters (pH, DO, and ORP) were examined at three COD/N ratios (0, 5, and 10). Results showed that the NO3‒-N removal efficiencies were significantly increased by 6.6 to 58.9% in the presence of s-Fe0. NH4+-N was mainly produced by chemical denitrification, and approximately 50% of the NO3‒-N was reduced to NH4+-N, at the COD/ratio of 0. An increase of the influent COD/N ratio resulted in lower chemical denitrification and higher bio-denitrification. Although chemical denitrification mediated by s-Fe0 led to an accumulation of NH4+-N at COD/N ratios of 0 and 5, the TIN removal efficiencies increased by 4.5%‒12.4%. Moreover, the effluent pH, DO, and ORP values showed a significant negative correlation with total Fe and Fe (II) (P<0.01). High-throughput sequencing analysis indicated that Trichococcus (77.2%) was the most abundant microorganism in the CW-Fe mesocosm, while Thauera, Zoogloea, and Herbaspirillum were the primary denitrifying bacteria. The denitrifiers, Simplicispira, Dechloromonas, and Denitratisoma, were the dominant bacteria for CW-CK. This study provides a valuable method and an improved understanding of NO3‒-N reduction characteristics of s-Fe0 in a wetland mesocosm.

关键词: Sponge iron     Wetland mesocosm     Electronic donor     Denitrification     COD/N ratio    

Enhanced nitrogen removal reliability and efficiency in integrated constructed wetland microcosms using

Yue WEN, Chao XU, Gang LIU, Yi CHEN, Qi ZHOU

《环境科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 140-147 doi: 10.1007/s11783-011-0286-6

摘要: The purpose of this study is to reduce the seasonal fluctuation and enhance the efficiency of nitrogen removal in vertical flow-horizontal subsurface flow (VF-HSF) constructed wetlands. Two sets of VF-HSF constructed wetlands were built, VF1-HSF1 and VF2-HSF2, and a zeolite section was placed in VF2. The results showed that VF2-HSF2 compared to VF1-HSF1 was not only a more reliable nitrogen removal method, but also enhanced the nitrogen removal efficiency by 50%. The average apparent rate of nitrogen removal in VF2-HSF2 reached to 2.52 gN·m ·d , which doubled the rate in VF1-HSF1. Plant uptake and organic nitrogen sediment accounted for 12% and 6% of the total nitrogen removal in VF1-HSF1, respectively, and 10% and 4% in VF2-HSF2, respectively. Biologic nitrogen removal was the dominant mechanism, which accounted for 79% and 87% of the total nitrogen removal in VF1-HSF1 and VF2-HSF2, respectively. Ammonia adsorbed by zeolite during the cold seasons was desorbed, and then nitrified in warm seasons, which resulted in a bioregeneration efficiency of 91%. Zeolite in VF was capable of transferring ammonia from cold seasons to warm seasons as well as enhancing nitrification, which was accompanied by high potential denitrification in HSF that reinforced the efficiency and relieved seasonal fluctuation of nitrogen removal in VF-HSF.

关键词: constructed wetland     zeolite     bioregeneration     nitrogen removal    

Research progress in removal of trace carbon dioxide from closed spaces

ZHANG Yatao, FAN Lihai, ZHANG Lin, CHEN Huanlin

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 310-316 doi: 10.1007/s11705-007-0057-x

摘要: In this paper, the removal of trace carbon dioxide from closed spaces through membrane process and biotransformation are introduced in detail. These methods include the microalgae photobioreactor, membrane microalgae photobioreactor, supported liquid membrane, membrane gas-liquid contactor, hydrogel membrane, and enzyme membrane bioreactor. The advantages and disadvantages of these methods are compared. It is found that higher CO removal efficiency can be obtained in biotransformation and membrane process. However, a large volume and high energy consumption are needed in biotransformation, while the low permeability and stability must be solved in the membrane process.

关键词: removal efficiency     consumption     removal     CO removal     membrane microalgae    

Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewatertreatment plants at high COD:N ratio

Supaporn Phanwilai, Naluporn Kangwannarakul, Pongsak (Lek) Noophan, Tamao Kasahara, Akihiko Terada, Junko Munakata-Marr, Linda Ann Figueroa

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1374-2

摘要: Abstract • Two IFAS and two MBBR full-scale systems (high COD:N ratio 8:1) were characterized. • High specific surface area carriers grew and retained slow-growing nitrifiers. • High TN removal is related to high SRT and low DO concentration in anoxic tanks. The relative locations of AOB, NOB, and DNB were examined for three different kinds of carriers in two types of hybrid biofilm process configurations: integrated fixed-film activated sludge (IFAS) and moving bed biofilm reactor (MBBR) processes. IFAS water resource recovery facilities (WRRFs) used AnodkalnessTM K1 carriers (KC) at Broomfield, Colorado, USA and polypropylene resin carriers (RC) at Fukuoka, Japan, while MBBR WRRFs used KC carriers at South Adams County, Colorado, USA and sponge carriers (SC) at Saga, Japan. Influent COD to N ratios ranged from 8:1 to 15:1. The COD and BOD removal efficiencies were high (96%–98%); NH4+-N and TN removal efficiencies were more varied at 72%–98% and 64%–77%, respectively. The extent of TN removal was higher at high SRT, high COD:N ratio and low DO concentration in the anoxic tank. In IFAS, RC with high specific surface area (SSA) maintained higher AOB population than KC. Sponge carriers with high SSA maintained higher overall bacteria population than KC in MBBR systems. However, the DNB were not more abundant in high SSA carriers. The diversity of AOB, NOB, and DNB was fairly similar in different carriers. Nitrosomonas sp. dominated over Nitrosospira sp. while denitrifying bacteria included Rhodobacter sp., Sulfuritalea sp., Rubrivivax sp., Paracoccus sp., and Pseudomonas sp. The results from this work suggest that high SRT, high COD:N ratio, low DO concentration in anoxic tanks, and carriers with greater surface area may be recommended for high COD, BOD and TN removal in WRRFs with IFAS and MBBR systems.

关键词: IFAS     MBBR     AnodkalnessTM K1 carrier     Polypropylene resin carrier     Sponge carrier    

degrader-enhanced bioremediation with low-dose persulfate oxidation for polycyclic aromatic hydrocarbon removalin alkaline soil: efficiency and influence on ecological health

《环境科学与工程前沿(英文)》 2023年 第17卷 第11期 doi: 10.1007/s11783-023-1733-x

摘要: Polycyclic aromatic hydrocarbon (PAH)-contaminated soils are usually complex and characterized by a lack of nutrition and soil salinization, resulting in difficulties in soil remediation. In this study, bioaugmentation with a PAH-degrading Bacillus PheN7 (BA) and low-dose persulfate oxidation (PS), along with natural biodegradation, were utilized to remediate alkaline PAH-contaminated soil. The soil used in the study had a pH of 9.35, and the total PAH content was 568.8 ± 31.0 mg/kg dry soil. After 42 d of remediation, the degradation efficiency of PAHs was 96.72% and 93.88% using persulfate oxidation and bioaugmentation, respectively, whereas 38.66% of PAHs were degraded in natural attenuation (NA). Bacillus was the dominant genera throughout the process of bioremediation with the relative abundance of 79.3% on day 42 in the BA system, whereas, Alcanivorax was enriched and became the dominant genera in PS systems. In the meantime, PAH degradation genes were detected with remarkably higher level in the BA system than in PS system during the remediation. In addition to the degradation of contaminants, persulfate oxidation promotes microbial bioremediation efficiency mainly by lowering the pH to neutral and increasing the active phosphorus content in the soil. Microbial species and ecological niches were less reduced in the PS system than in the BA system. Collectively, persulfate oxidation had a better impact on the soil microbiome and is more suitable for long-term soil health than bioaugmentation through PheN7 addition.

关键词: Bioaugmentation     Low-dose persulfate oxidation     Polycyclic aromatic hydrocarbon     Remediation    

Enhancing the efficiency of nitrogen removing bacterial population to a wide range of C:N ratio (1.5:1 to 14:1) for simultaneous C & N removal

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1522-y

摘要:

• Simultaneous C & N removal in Methammox occurs at wide C:N ratio.

关键词: Methanogens     Biological Nitrogen Removal (BNR)     Simultaneous     Methammox     C:N ratio    

Removal of arsenic by pilot-scale vertical flow constructed wetland

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-021-1435-1

摘要:

• VFCWs are effective for the treatment of arsenic-containing wastewater.

关键词: Constructed wetland     Arsenic     Removal efficiency     Mass balance    

Arsenic and chromate removal from water by iron chips-Effects of anions

ZHANG Ruihua, SUN Hongwen, YIN Jin

《环境科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 203-208 doi: 10.1007/s11783-008-0036-6

摘要: The purpose of this study is to estimate the removal efficiency of As and Cr (VI) by one kind of industrial waste – iron chips, as well as to estimate the effects of typical inorganic anions (sulfate, phosphate, and nitrate

关键词: phosphate     removal efficiency     industrial     typical inorganic    

Removal of elemental mercury by KI-impregnated clay

Boxiong SHEN,Jianhong CHEN,Ji CAI

《环境科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 236-243 doi: 10.1007/s11783-014-0765-7

摘要: This study described the use of clay impregnated by KI in gas phase elemental mercury (Hg ) removal in flue gas. The effects of KI loading, temperature, O , SO and H O on Hg removal were investigated using a fixed bed reactor. The Hg removal efficiency of KI-clay with 3% KI loading could maintain at a high level (approximately 80 %) after 3 h. The KI-clay demonstrated to be a potential adsorbent for Hg removal when compared with activated carbon based adsorbent. O was found to be an important factor in improving the Hg removal. O was demonstrated to assist the transfer of KI to I on the surface of KI-clay, which could react with Hg directly. NO and SO could slightly improve Hg removal, while H O inhibited it greatly. The results indicated that after adsorption, most of the mercury escaped from the surface again. Some of the mercury may have been oxidized as it left the surface. The results demonstrated that the chemical reaction primarily occurred between KI and mercury on the surface of the KI-clay.

关键词: clay     elemental mercury     removal efficiency     potassium iodide     mechanism    

Coupling evaluation for material removal and thermal control on precision milling machine tools

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 12-12 doi: 10.1007/s11465-021-0668-9

摘要: Machine tools are one of the most representative machining systems in manufacturing. The energy consumption of machine tools has been a research hotspot and frontier for green low-carbon manufacturing. However, previous research merely regarded the material removal (MR) energy as useful energy consumption and ignored the useful energy consumed by thermal control (TC) for maintaining internal thermal stability and machining accuracy. In pursuit of energy-efficient, high-precision machining, more attention should be paid to the energy consumption of TC and the coupling relationship between MR and TC. Hence, the cutting energy efficiency model considering the coupling relationship is established based on the law of conservation of energy. An index of energy consumption ratio of TC is proposed to characterize its effect on total energy usage. Furthermore, the heat characteristics are analyzed, which can be adopted to represent machining accuracy. Experimental study indicates that TC is the main energy-consuming process of the precision milling machine tool, which overwhelms the energy consumption of MR. The forced cooling mode of TC results in a 7% reduction in cutting energy efficiency. Regression analysis shows that heat dissipation positively contributes 54.1% to machining accuracy, whereas heat generation negatively contributes 45.9%. This paper reveals the coupling effect of MR and TC on energy efficiency and machining accuracy. It can provide a foundation for energy-efficient, high-precision machining of machine tools.

关键词: machine tools     cutting energy efficiency     thermal stability     machining accuracy     coupling evaluation    

Microplastics in municipal wastewater treatment plants: a case study of Denizli/Turkey

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1699-8

摘要:

● High amounts of microplastics are released to receiving media from WWTPs.

关键词: Microplastics     Wastewater treatment plant     Removal efficiency     Daily discharge    

Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1338-6

摘要:

• N-Cl-DCAM, an emerging N-DBP in drinking water was investigated.

关键词: N-chloro-2     2-dichloroacetamide     Liquid chromatography with tandem mass spectrometry     Precursors     Removal efficiency     Ozonation integrated with biological activated carbon    

Removal of non-point pollutants from bridge runoff by a hydrocyclone using natural water head

Jianghua YU, Yeonseok KIM, Youngchul KIM

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 886-895 doi: 10.1007/s11783-012-0449-0

摘要: A hydrocyclone using natural water head provided by bridge was operated for the treatment of stormwater runoff. The hydrocyclone was automatically controlled using electronic valve which is connected to a pressure meter. Normally the hydrocyclone was open during dry days, but it was closed after the capture of the first flush. The results indicated that the average pressure and the flow rate were directly affected by the rainfall intensity. The pressure head was more than 2 m when the rainfall intensity was above 5 mm·h . The percentage volume of underflow with high solids concentration decreased as the pressure and flow rate increased, but the percentage volume of overflow with almost no solids showed the opposite behavior. The total suspended solids (TSS) concentration ratio between the overflow and inflow (TSS /TSS ) decreased as a function of the operational pressure, while the corresponding ratio of underflow to inflow (TSS /TSS ) increased. The TSS separation efficiency was evaluated based on a mass balance. It ranged from 25% to 99% with the pressure head ranging from 1.4 to 9.7 m, and it was proportional to pressure and flow rate. Normally, the efficiency was more than 50% when the pressure was higher than 2 m. The analysis of the water budget indicated that around 13% of the total runoff was captured by the hydrocyclone as a first flush, and this runoff was separated as underflow and overflow with the respective percentage volumes of 29% and 71%. The pollutants budget was also examined based on a mass balance. The results showed that the percentage of TSS, chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in underflow were 73%, 59%, 7.6%, and 49%, respectively. Thus, it can be concluded that the hydrocyclone worked well. It separated the first flush as solids-concentrated underflow and solids-absent overflow, and effectively reduced the runoff volume needing further treatment. Finally, four types of optional post treatment design are presented and compared.

关键词: first flush     hydrocyclone     non-point pollution     removal efficiency     stormwater runoff    

Occurrence and removal of selected polycyclic musks in two sewage treatment plants in Xi’an, China

Yongxiang REN, Kai WEI, Hua LIU, Guoqiang SUI, Junping WANG, Yanjun SUN, Xiaohui ZHENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 166-172 doi: 10.1007/s11783-012-0471-2

摘要: Polycyclic musks are widely used for cosmetics and other personal care and household cleaning products. The occurrence and removal of two representative polycyclic musks, galaxolide (HHCB) and tonalide (AHTN) were investigated in three different processes of two sewage treatment plants (STPs) in Xi’an, China. The samples were preconcentrated by solid phase extraction procedure and analyzed using a gas chromatography mass spectrometry (GC/MS) by a modified procedure. The HHCB was in the range of 82.8 to 182.5 ng·L in the influents and 22.6 to 103.9 ng·L in the effluents. The AHTN ranged from 11.0 to 19.3 ng·L in the influents and 2.2 to 8.8 ng·L in the effluents. The removal efficiency of the two musks varied in the ranges of 43.1%–70.4% for HHCB and 54.2%–84.4% for AHTN. Concentrations of the two musks in aqueous phase of three processes slightly increased along the primary process, and significantly removed during the biologic treatment processes, revealing that the selected musks could be remarkably removed in varied activated sludge processes. Advanced processes of activated sludge did not show a significant superiority on selected musk removal compared to the conventional process. The selected musk removal mainly resulted from the adsorption function of activated sludge. There was no significant change of HHCB/AHTN ratios along the treatment flow, indicating that each sewage treatment structure had a similar removal efficiency for the two musks.

关键词: polycyclic musk     sewage     tonalide (AHTN)     galaxolide (HHCB)     removal efficiency     adsorption    

标题 作者 时间 类型 操作

Microalgae

Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN

期刊论文

Nitrate removal to its fate in wetland mesocosm filled with sponge iron: Impact of influent COD/N ratio

Zhihao Si, Xinshan Song, Xin Cao, Yuhui Wang, Yifei Wang, Yufeng Zhao, Xiaoyan Ge, Awet Arefe Tesfahunegn

期刊论文

Enhanced nitrogen removal reliability and efficiency in integrated constructed wetland microcosms using

Yue WEN, Chao XU, Gang LIU, Yi CHEN, Qi ZHOU

期刊论文

Research progress in removal of trace carbon dioxide from closed spaces

ZHANG Yatao, FAN Lihai, ZHANG Lin, CHEN Huanlin

期刊论文

Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewatertreatment plants at high COD:N ratio

Supaporn Phanwilai, Naluporn Kangwannarakul, Pongsak (Lek) Noophan, Tamao Kasahara, Akihiko Terada, Junko Munakata-Marr, Linda Ann Figueroa

期刊论文

degrader-enhanced bioremediation with low-dose persulfate oxidation for polycyclic aromatic hydrocarbon removalin alkaline soil: efficiency and influence on ecological health

期刊论文

Enhancing the efficiency of nitrogen removing bacterial population to a wide range of C:N ratio (1.5:1 to 14:1) for simultaneous C & N removal

期刊论文

Removal of arsenic by pilot-scale vertical flow constructed wetland

期刊论文

Arsenic and chromate removal from water by iron chips-Effects of anions

ZHANG Ruihua, SUN Hongwen, YIN Jin

期刊论文

Removal of elemental mercury by KI-impregnated clay

Boxiong SHEN,Jianhong CHEN,Ji CAI

期刊论文

Coupling evaluation for material removal and thermal control on precision milling machine tools

期刊论文

Microplastics in municipal wastewater treatment plants: a case study of Denizli/Turkey

期刊论文

Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking

期刊论文

Removal of non-point pollutants from bridge runoff by a hydrocyclone using natural water head

Jianghua YU, Yeonseok KIM, Youngchul KIM

期刊论文

Occurrence and removal of selected polycyclic musks in two sewage treatment plants in Xi’an, China

Yongxiang REN, Kai WEI, Hua LIU, Guoqiang SUI, Junping WANG, Yanjun SUN, Xiaohui ZHENG

期刊论文